1) Show that $y=x-x^{-1}$ is a solution of the differential equation $x y^{\prime}+y=2 x$.
2) Verify that $y=\sin x \cos x-\cos x$ is a solution of the initial-value problem:

$$
y^{\prime}+(\tan x) y=\cos ^{2} x \quad y(0)=-1
$$

on the interval $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
3) For what nonzero values of k does the function $y=\sin k t$ satisfy the differential equation $y^{\prime \prime}+9 y=0$? For those values of k, verify that every member of the family of functions $y=A \sin k t+B \cos k t$ is also a solution.
4) For what values of r does the function $y=e^{r t}$ satisfy the differential equation $y^{\prime \prime}+y^{\prime}-6 y=0$?
5) A population is modeled by the differential equation:

$$
\frac{d P}{d t}=1.2 P\left(1-\frac{P}{4200}\right)
$$

a) For what values of P is the population increasing?
b) For what values of P is the population decreasing?
c) What are the equilibrium solutions?
6) A function $y(t)$ satisfies the differential equation:

$$
\frac{d y}{d t}=y^{4}-6 y^{3}+5 y^{2}
$$

a) What are the constant solutions of the equation?
b) For what values of y is y increasing?
c) For what values of y is y decreasing?

